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TOTAL SYNTHESIS OF NONASACCHARIDE REPEATING UNIT OF PLANT CELL 
WALL XYLOGLUCAN: AN ENDOGENOUS HORMONE WHICH REGULATES CELL 

GROWTH1 

ICRIICRIRO SARAI. YOSRIAIU NAXARARA, AND TOMOYA OaAWA+ 
RIKEN (The Institute of Physical and Chemical Research), Wako-shi. Saitama. 351-01 Japan 

Abstract: Both glycoheptaosyl and glycononaosyl repeating units of plant cell wall xyloglucan 
were synthesized for the first time in a stereocontrolled manner. 

Xyloglucan 1 is present as a major component in the primary cell wall of dicots. monocots 

and gymnosperms. and contains equal amounts of two altematingly repeating oligosaccharide 

fragments 2 and 3, which have been isolated from cell walls and chemically characterized2. 
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In 19&Q. York and co- 

workers reported3 an 

inhibition of auxin 

stimulated growth of etiolated 

pea stem segments by 

oligosaccharide 2 but not 3. 

both of which were isolated 

by digestion of suspension- 

cultured sycamore cell walls 

with endo-S-1.4-glucanase 

of Trfchoderma viridc. In 

1988. this natural anti-auxin 

activity of 2 was confirmed 

by an independent bio- 

testing4. As part of our 

project on the synthetic 

studies directed toward plant 

cell wall-derived 

oligosaccharide fragments 

with biological functions3. 

we now describe first total 

syntheses of 2 and 3 in a 

stereocontrolled manner. 

Retrosynthetic analysis 

of 2 and 3 led us to design two 

glycosyl donors 4~ and 4b. 

and a versatile glycohexaosyl 

acceptor 5 which in turn 

may be assembled from a 

properly protected 
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glycotctraosyl donor 6 and a glycobiosyl acceptor 7. According to this scenario of a convergent 

approach to the synthesis of both 2 and 3. a key intermediate 15, a synthetic equivalent to 5. was 

first synthesized as follows. 

Stereocontrolled glycosylation of diol 86, readily obtainable from S-D-Glc-(l-+4)-S-D-Glc- 

(l+OBn7 in 3 steps (I TIC1 in Py, 2 BnBr. NaH in DMP, 3 9:1 AcOH-H20. overall 50%), with methyl 

thioglycoside 9 in the presence of CuBt2-BuqNBr-HgBr2-powdered molecular sieves 4A (MS4A)* 

in CH3NO2 afforded 10 in 62% yield, the structure of which was confirmed by conversion into 

free glycotetraose 11. Methyl thioglycoside 9 was conveniently prepared from corresponding 

trichloroacetimidate9 by treatment with Bu3SnSMel”. Conversion of 11 into glycosyl donor 6 

was achieved in 3 steps via 12 (I Ac20 in Py, 2 NH2NH2eAcOH in DMF~~, 3 CCl3CN12, DBU in 

CH2Cl2. overall 72%). Mitsunobu reaction 13 of diol 1314 with 4-MeOPhOH, (EtOCON)2 and Ph3P in 

(CH2Cl)2 afforded glycobiosyl acceptor 7 in 75% yield. 

Coupling between glycobiosyl acceptor 7 and trichloroacetimidate 6 was performed in the 

presence of BF3eOEt2 to give a 53% yield of glycohexaoside 14, which was converted in 56% yield 

into the key glycosyl acceptor 15 by treatment with CAN*5 in 41 CH3CN-H20. Glycosylation of 15 

with 9 in the presence of CuBr2-BuqNBr-HgBr2-MS4A in CH3NO2 proceeded with low 

stereoselectivity and gave in 64% yield a mixture of a-( 1-t 6) linked product 16 and the S isomer 

17 in a ratio of 43, which were separated and deblocked in 2 steps (I O.lM NaOMe in MeOH, 2 W-C. 

H2 in MeOH) into free glycoheptaose 3 (63%) and 18 (94%). 

Scheme 2 

Having prepared a glycoheptaosyl repeating unit 3 of 1. development of a synthetic route 

to 2 was now examined by use of the key intermediate 15. Methylthioglycoside 27 was designed 
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to play a role as a synthetic equivalent to the key glycotriosyl donor 4b (scheme 1) and 

synthesized in a following way. Ally1 xylopyranoside 20 was pnpared from 19l6 in 4 steps (I 
NaOMe in MeOH. 2 BnBr. NaH in DMF. 3 TMSOTf-MS4A17 in (CH2Cl)2.4 NaOMe in MeOH, overall 

75%). Trichlomacetimidate 22 was obtained from diacetate 2118 in 3 steps (I NH2NH2*H20 in 

DMF. 2 CCl3CN. DBU in CH2Cl2, overall 80%). BF3=OEt2-MS4A Promoted glycosylation of 20 with 22 

afforded 23 (73%), which was saponified by NaOMe in MeOH to give 24 (94%). MeOTf-MS4A19 

Promoted glycosylation of 24 with 25 20 afforded an 81% yield of a-(1+2) linked glycotrioside 2 6 

along with a 7% yield of 8-( 1+2) linked isomer. Conversion of 26 into 27 was carried out in 7 

steps (I (Ph3P)3BhCl, DABCO in 7:3:1 EtOH-PhH-H20 21,2 HgCI2-HgO in 9:l Me2CO-H20.3 10% W-C 

in 1:l THF-MeOH, 4 Ac20 in Py. 5 NH2NHrAcOH in DMF. 6 CCl3CN, DBU in CH2C12,7 BugSnSMe, 

BF3mOEt2, MS4A in (CH2C1)2, overall 31%). Crucial coupling between 15 and 27 proceeded in the 

26 

Scheme 3 (All z allyI) 

presence of CuBr2-BuqNBr-HgBr2-MS4A in Et20 to give a 26% yield of a mixture of a-(1+6) 

linked 28 and the p-(1+6) linked isomer in a ratio of 3:l. Deprotection of 28 afforded the target 2 

in 2 steps (I NaOMe in MeOH, 2 10% W-C in 2:l MeOH-H20, then Sephadex G-25 in H20, overall 

54%). lH-N.m.r. data of synthetic 2 and 3 were in good agreement with those22 of natural 

samples, thus providing synthetic support for the proposed structures of 2 and 3 as the 

altematingly repeating unit of plant cell wall xyloglucans. 

In summary, unambiguous routes to the syntheses of target molecules 2 and 3 were 

developed for the first time by employing the alcohol 15 as a key glycohexaosyl acceptor. 
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